
© 2019 Cray Inc.

I n t e rp re t i ng pe r f t oo l s

Pe r fo rmance Da ta
Heidi Poxon

Sr. Principal Engineer
Cray Inc.

April 2019

© 2019 Cray Inc.

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

2

© 2019 Cray Inc.

• Identify slowest areas and notable bottlenecks of a program
• Use perftools-lite
• Good for examining performance characteristics of a program and for scaling analysis

• Focus on MPI communication
• Use perftools-lite first to determine if MPI time is dominant or if there is a load

imbalance between ranks
• Use perftools (pat_build –g mpi) to collect more detailed MPI-specific information

including MPI_SYNC time to detect late arrivers to collectives
• Good for identifying source of imbalance and scaling analysis at targeted final job size

• Focus on loop optimization
• Use perftools-lite-loops
• Use perftools-lite-hbm for memory traffic analysis
• Good for vectorizing, parallelizing and cache optimization

Some Useful Experiments

3

© 2019 Cray Inc.

• CCE provides loopmark, cross-references, compile options, and optimization messages in easy-to-read text files

• Just add the following flag to the application’s Makefile:

• Tip: For additional information on restructuring and optimization changes made by CCE, try –h list=d for
decompiled code

• Use with perftools to understand top time consuming loop optimization information

Cray Compiler Listings

-h list=a …

4

© 2019 Cray Inc.

• Generate full report
• user@login> pat_report my_data_directory+12s/ > rpt

• Generate report with call tree (or by callers)
• user@login> pat_report –O calltree+src

• Generate report without pruning
• user@login> pat_report –P

• Show each MPI rank or each OpenMP thread in report
• user@login> pat_report –s pe=ALL
• user@login> pat_report –s th=ALL

Get Additional Information Without Re-running

5

© 2019 Cray Inc.

• To make the profile easier to interpret, samples are attributed to a caller that is
either a user defined function, or a library function called directly by a user
defined function

• To disable this adjustment, and show functions actually sampled, use the
‘pat_report –P’ option to disable pruning

• You should be able to see the caller/callee relationship with
‘pat_report -P -O callers’

Don’t See an Expected Function?

6

© 2019 Cray Inc.

Why don’t I see a particular function in a report?

• Cray tools filter out data that may distract you
• Use ‘pat_report –T’ to see functions that didn’t take much time

• Still don’t see it?
• Check the compiler listing to see if the function was inlined

Don’t See an Expected Function? (continued)

7

© 2019 Cray Inc.

• When a function is called that cannot be attributed to a user-defined parent
function, it gets placed in ETC

• Try ‘pat_report –P’

• Note: pat_report depends on the accuracy of the DWARF issued by the compiler

What is ETC Group in a Report?

8

© 2019 Cray Inc.

• $ pat_report –s pe=ALL

• $ pat_report –s th=ALL

How Do I See per-Rank or per-Thread Data?

9

© 2019 Cray Inc.

• Check the Notes before each table in the text report

How Was Data Aggregated?

Notes for table 1:

This table shows functions that have significant exclusive sample
hits, averaged across ranks.

For further explanation, see the "General table notes" below,
or use: pat_report -v -O samp_profile ...

Table 1: Profile by Function

10

© 2019 Cray Inc.

• Use to understand the “why” of a bottleneck

• Default set of counters are collected for whole program

• Used to present memory and vector summary metrics

• User can choose to collect per function or per region of code with PAT_region API

When to Collect Counters

11

© 2019 Cray Inc.

• Cray supports raw counters, derived metrics and thresholds for:
• Processor (core and uncore)

• Network

• Accelerator

• Power

• Predefined groups

• Groups together counters for experiments

• See hwpc, nwpc, accpc, and rapl man pages

Performance Counters Overview

12

© 2019 Cray Inc.

• Runtime controlled through PAT_RT_XXX environment variables

• See intro_craypat(1) man page

• Examples of control

• Enable full trace

• Change number of data files created

• Enable collection of HW, network or power counter events

• Enable tracing filters to control trace file size (max threads, max call stack
depth, etc.)

CrayPat Runtime Options

13

© 2019 Cray Inc.

• Run the following utility on a compute node:

• papi_native_avail

• papi_avail

• Use pat_help to see counter groups and derived metrics

• user@login> pat_help counters processor_type deriv

• To collect performance counters

• Set PAT_RT_PERFCTR environment variable to list of events or group prior to
execution

How to Get List of Events for a Processor

14

© 2019 Cray Inc.

• $ module load perftools-lite-loops

• Build program with CCE
• Should see messages from CrayPat during build saying that it created an instrumented

executable

• Remember to add -hlist=a to build with CCE listing

• Add -hpl=/path_to_program_library/my_program.pl if you want to use Reveal

• Run program

• Performance data sent to STDOUT and to directory with unique name

Focus on Loop Optimization – Find Top Loops

15

© 2019 Cray Inc.

Inclusive and Exclusive Time in Loops
Loop | Loop Incl | Loop Hit | Loop | Loop | Loop | Function=/.LOOP[.]
Incl | Time | | Trips | Trips | Trips | PE=HIDE
Time% | | | Avg | Min | Max |
|---
| 99.4% | 333.895923 | 1 | 500.0 | 500 | 500 | les3d_.LOOP.3.li.216
| 98.7% | 331.721721 | 500 | 2.0 | 2 | 2 | les3d_.LOOP.4.li.272
| 26.5% | 89.032566 | 1,000 | 96.0 | 96 | 96 | fluxk_.LOOP.1.li.28
| 24.6% | 82.681435 | 96,000 | 97.0 | 97 | 97 | fluxk_.LOOP.2.li.29
| 24.2% | 81.356609 | 1,000 | 96.0 | 96 | 96 | fluxj_.LOOP.1.li.28
| 22.5% | 75.770180 | 96,000 | 97.0 | 97 | 97 | fluxj_.LOOP.2.li.29
| 22.5% | 75.458432 | 1,000 | 96.0 | 96 | 96 | fluxi_.LOOP.1.li.21
| 22.5% | 75.453469 | 96,000 | 96.0 | 96 | 96 | fluxi_.LOOP.2.li.22
| 18.9% | 63.574836 | 9,312,000 | 96.0 | 96 | 96 | visck_.LOOP.1.li.344
| 17.1% | 57.529187 | 9,312,000 | 96.0 | 96 | 96 | viscj_.LOOP.1.li.340
| 15.7% | 52.794857 | 9,216,000 | 97.0 | 97 | 97 | visci_.LOOP.1.li.782
| 5.0% | 16.924522 | 1,000 | 99.0 | 99 | 99 | extrapi_.LOOP.1.li.128

Example Loop Statistics

16

© 2019 Cray Inc.

• High inclusive time

• Create call tree with loops:
• user@login> pat_report –O calltree

How to Identify Important Loops

17

© 2019 Cray Inc.

• Phased in over perftools 7.0.0, 7.0.1, and 7.0.2 for Intel Xeon processors

• New default counter group with perftools-lite and perftools experiments

• New table for memory bandwidth by NUMA node in default lite and full reports

• Separate functionality from perftools-lite-hbm experiment which uses CCE,
CrayPat, and Reveal to track memory traffic and associate with allocation sites

What About Memory Bandwidth?

18

© 2019 Cray Inc.

Table 1: Memory Bandwidth by Numanode

Memory | Local | Remote | Thread | Memory | Memory | Numanode
Traffic | Memory | Memory | Time | Traffic | Traffic | Node Id
GBytes | Traffic | Traffic | | GBytes | / | PE=HIDE

| GBytes | GBytes | | / Sec | Nominal | Thread=HIDE
| | | | | Peak |

39,429 | 39,429 | 0 | 990.218871 | 39.82 | 33.4% | Max of Numanode values
|---
| 39,429 | 39,429 | 0 | 990.217439 | 39.82 | 33.4% | numanode.0
||--
|| 39,429 | 39,429 | 0 | 990.217439 | 39.82 | 33.4% | nid.200
|| 38,389 | 38,389 | 0 | 990.224163 | 38.77 | 32.5% | nid.205
||==
| 38,857 | 38,857 | 0 | 990.218903 | 39.24 | 32.9% | numanode.1
||--
|| 38,857 | 38,857 | 0 | 990.211194 | 39.24 | 32.9% | nid.200
|| 38,528 | 38,528 | 0 | 990.226690 | 38.91 | 32.6% | nid.205

Example: Memory Bandwidth per NUMA
8 MPI ranks, 4 on each of 2 nodes

19

© 2019 Cray Inc.

Table 3: Memory Bandwidth by Numanode (limited entries shown)

Memory | Local | Remote | Thread | Memory | Memory | Numanode
Traffic | Memory | Memory | Time | Traffic | Traffic | Node Id=[max3,min3]
GBytes | Traffic | Traffic | | GBytes | / | PE=HIDE

| GBytes | GBytes | | / Sec | Nominal |
| | | | | Peak |

|---
| 172.95 | 171.48 | 1.48 | 19.755654 | 8.75 | 11.4% | numanode.0
||--
|| 172.77 | 171.48 | 1.30 | 19.414237 | 8.90 | 11.6% | nid.68
|| 172.09 | 170.61 | 1.48 | 19.071340 | 9.02 | 11.7% | nid.63
|| 171.20 | 169.93 | 1.27 | 17.631761 | 9.71 | 12.6% | nid.62
|| 162.51 | 161.07 | 1.43 | 19.675857 | 8.26 | 10.8% | nid.71
|| 162.28 | 160.82 | 1.46 | 19.730793 | 8.22 | 10.7% | nid.72
|| 161.75 | 160.29 | 1.46 | 19.755654 | 8.19 | 10.7% | nid.70
||==
| 168.69 | 166.81 | 1.89 | 19.781479 | 8.53 | 11.1% | numanode.1
||--
|| 168.69 | 166.81 | 1.89 | 19.454144 | 8.67 | 11.3% | nid.62
|| 167.74 | 166.03 | 1.71 | 19.476164 | 8.61 | 11.2% | nid.63
|| 166.66 | 164.88 | 1.78 | 19.225409 | 8.67 | 11.3% | nid.61
|| 161.68 | 160.07 | 1.61 | 19.781479 | 8.17 | 10.6% | nid.71
|| 161.60 | 159.99 | 1.62 | 19.642791 | 8.23 | 10.7% | nid.70
|| 157.32 | 156.01 | 1.31 | 18.036118 | 8.72 | 11.4% | nid.72
|===

Examine NUMA Traffic

Example traffic from
pure MPI run

20

© 2019 Cray Inc.

Table 3: Memory Bandwidth by Numanode (limited entries shown)

Memory | Local | Remote | Thread | Memory | Memory | Numanode
Traffic | Memory | Memory | Time | Traffic | Traffic | Node Id=[max3,min3]
GBytes | Traffic | Traffic | | GBytes | / | PE=HIDE

| GBytes | GBytes | | / Sec | Nominal | Thread=HIDE
| | | | | Peak |

|---
| 184.47 | 173.59 | 10.89 | 11.578777 | 15.93 | 20.7% | numanode.0
||--
|| 183.50 | 173.59 | 9.91 | 11.569322 | 15.86 | 20.7% | nid.63
|| 182.61 | 172.40 | 10.21 | 11.578777 | 15.77 | 20.5% | nid.61
|| 178.55 | 167.75 | 10.80 | 11.563156 | 15.44 | 20.1% | nid.71
|| 178.10 | 168.14 | 9.96 | 11.562097 | 15.40 | 20.1% | nid.62
|| 178.08 | 168.07 | 10.01 | 11.564512 | 15.40 | 20.1% | nid.68
|| 178.01 | 167.20 | 10.82 | 11.572032 | 15.38 | 20.0% | nid.70
||==
| 60.36 | 14.73 | 45.62 | 9.073119 | 6.65 | 8.7% | numanode.1
||--
|| 60.36 | 14.73 | 45.62 | 9.072693 | 6.65 | 8.7% | nid.63
|| 59.88 | 14.33 | 45.55 | 9.071553 | 6.60 | 8.6% | nid.62
|| 59.48 | 14.19 | 45.29 | 9.068044 | 6.56 | 8.5% | nid.68
|| 58.78 | 13.70 | 45.08 | 9.069259 | 6.48 | 8.4% | nid.70
|| 58.67 | 13.87 | 44.81 | 9.071591 | 6.47 | 8.4% | nid.69
|| 58.53 | 13.86 | 44.67 | 9.067146 | 6.46 | 8.4% | nid.71
|===

Example Traffic From an MPI+OpenMP Run

21

© 2019 Cray Inc.

perftools-lite:

• Optionally run pat_report on the data directory from login node
• export PAT_RT_REPORT_CMD=pat_report,-Q0
• Reduces job execution time, but disables parallel pat_report
execution

perftools-lite or perftools:

• For a quick preview of performance data, use subset of data to generate a
report

• user@login> pat_report -Q1 ç report from 1st ap2 file
• user@login> pat_report –Q3 ç report from 1st, middle, and last file

Controls for Report Generation

22

© 2019 Cray Inc.

• Record Subset of PEs during execution

• It works again! (we found that it was broken last year)

• Example: export PAT_RT_EXPFILE_PES=0,4,5,10

• Don’t instrument select binaries when using perftools-lite

• Good for applications that generate test or intermediate binaries with CMake

and GNU Autotools

• Use CRAYPAT_LITE_WHITELIST for binaries you DO want instrumented

Controlling Instrumentation

23

© 2019 Cray Inc.

Utility that allows you to profile un-instrumented, dynamically linked binaries with
CrayPat!

• Delivers Cray performance tools profiling information for codes that cannot easily
be rebuilt

• Makes profiling possible for a wider set of HPC applications

• Available starting with perftools 7.0.1

• Initially targets Cray XC systems running CLE 6 or later

pat_run New!

24

© 2019 Cray Inc.

• Insert before executable in run command
• user@login> srun –n 16 pat_run ./my_program

• user@login> pat_report expdir > my_report

• Use existing perftools capability
• Optionally collect a different group of performance counters

• user@login> export PAT_RT_PERFCTR=1
• user@login> aprun -n 16 pat_run ./my_program

• Perform other experiments, for example trace MPI routines
• user@login> pat_run -g mpi ./my_program

• Create additional views of the data with pat_report options, such as
• user@login> pat_report –P –O callers+src

Using pat_run

25

© 2019 Cray Inc.

• Use pat_region API to mark regions in your code to profile

• Enable or disable specific function tracing based on name, size, …

• Choose additional predefined trace groups (blas, hdf5, ...)

• Adjust sampling rate (collect counters per sample, sample 1000 times a second, ….)

• Collect different performance counters (cache hierarchy, TLB misses, …)

• Customize data sorting, aggregation, or collection

Example Advanced Capability

26

© 2019 Cray Inc.

• Can produce huge amounts of performance data
• Adjust job size for shorter and smaller runs

• Can be used with sampling and tracing (tracing is most common)
• perftools-lite-events module
• pat_build –g mpi

• pat_build –u –g mpi

• To enable, set PAT_RT_SUMMARY=0 environment variable at runtime

Creating a Timeline

27

© 2019 Cray Inc.

View Program Timeline (36GB CP2K Full Trace)

Shows wait
time

Hover to see what
different filters do

CPU call stack:
Bar represents CPU

function or region: Hover
over bar to get function

name, start and end time

Program
histogram

showing wait
time

Program
wallclock time

line

© 2019 Cray Inc.

Memory High Water Over Time (Apprentice2)

Produced with:
pat_build ./my_program
PAT_RT_SAMPLING_DATA=memory
PAT_RT_SUMMARY=0

29

© 2019 Cray Inc.

• Focus on whole program analysis

• Reduce the time investment associated with porting and tuning applications on new
and existing Cray systems

• Provide easy-to-use interfaces complimented with a wealth of capability when you
need it for analyzing the most critical production codes

• Offer analysis and recommendations that focus on areas that impact performance
and scaling, such as

• Imbalance
• Communication overhead and inefficiencies
• Vectorization and memory utilization efficiency

Summary of Cray Performance Tools

30

